Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Drug Deliv Rev ; 207: 115202, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38336091

RESUMEN

The symbiotic interplay of organoid technology and advanced imaging strategies yields innovative breakthroughs in research and clinical applications. Organoids, intricate three-dimensional cell cultures derived from pluripotent or adult stem/progenitor cells, have emerged as potent tools for in vitro modeling, reflecting in vivo organs and advancing our grasp of tissue physiology and disease. Concurrently, advanced imaging technologies such as confocal, light-sheet, and two-photon microscopy ignite fresh explorations, uncovering rich organoid information. Combined with advanced imaging technologies and the power of artificial intelligence, organoids provide new insights that bridge experimental models and real-world clinical scenarios. This review explores exemplary research that embodies this technological synergy and how organoids reshape personalized medicine and therapeutics.


Asunto(s)
Inteligencia Artificial , Organoides , Adulto , Humanos
2.
Biomaterials ; 306: 122504, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38377848

RESUMEN

This study addresses the demand for research models that can support patient-treatment decisions and clarify the complexities of a tumor microenvironment by developing an advanced non-animal preclinical cancer model. Based on patient-derived tumor spheroids (PDTS), the proposed model reconstructs the tumor microenvironment with emphasis on tumor spheroid-driven angiogenesis. The resulting microfluidic chip system mirrors angiogenic responses elicited by PDTS, recapitulating patient-specific tumor conditions and providing robust, easily quantifiable outcomes. Vascularized PDTS exhibited marked angiogenesis and tumor proliferation on the microfluidic chip. Furthermore, a drug that targets the vascular endothelial growth factor receptor 2 (VEGFR2, ramucirumab) was deployed, which effectively inhibited angiogenesis and impeded tumor invasion. This innovative preclinical model was used for investigating distinct responses for various drug combinations, encompassing HER2 inhibitors and angiogenesis inhibitors, within the context of PDTS. This integrated platform could potentially advance precision medicine by harmonizing diverse data points within the tumor microenvironment with a focus on the interplay between cancer and the vascular system.


Asunto(s)
Neoplasias , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Angiogénesis , Neovascularización Patológica/metabolismo , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico
3.
Sci Adv ; 9(47): eadk1098, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38000030

RESUMEN

Gastric cancer (GC) with peritoneal metastases and malignant ascites continues to have poor prognosis. Exosomes mediate intercellular communication during cancer progression and promote therapeutic resistance. Here, we report the significance of exosomes derived from malignant ascites (EXOAscites) in cancer progression and use modified exosomes as resources for cancer therapy. EXOAscites from patients with GC stimulated invasiveness and angiogenesis in an ex vivo three-dimensional autologous tumor spheroid microfluidic system. EXOAscites concentration increased invasiveness, and blockade of their secretion suppressed tumor progression. In MET-amplified GC, EXOAscites contain abundant MET; their selective delivery to tumor cells enhanced angiogenesis and invasiveness. Exosomal MET depletion substantially reduced invasiveness; an additive therapeutic effect was induced when combined with MET and/or VEGFR2 inhibition in a patient-derived MET-amplified GC model. Allogeneic MET-harboring exosome delivery induced invasion and angiogenesis in a MET non-amplified GC model. MET-amplified patient tissues showed higher exosome concentration than their adjacent normal tissues. Manipulating exosome content and production may be a promising complementary strategy against GC.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Ascitis/patología , Línea Celular Tumoral
4.
Front Cell Neurosci ; 17: 1249043, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868193

RESUMEN

Optogenetic techniques combine optics and genetics to enable cell-specific targeting and precise spatiotemporal control of excitable cells, and they are increasingly being employed. One of the most significant advantages of the optogenetic approach is that it allows for the modulation of nearby cells or circuits with millisecond precision, enabling researchers to gain a better understanding of the complex nervous system. Furthermore, optogenetic neuron activation permits the regulation of information processing in the brain, including synaptic activity and transmission, and also promotes nerve structure development. However, the optimal conditions remain unclear, and further research is required to identify the types of cells that can most effectively and precisely control nerve function. Recent studies have described optogenetic glial manipulation for coordinating the reciprocal communication between neurons and glia. Optogenetically stimulated glial cells can modulate information processing in the central nervous system and provide structural support for nerve fibers in the peripheral nervous system. These advances promote the effective use of optogenetics, although further experiments are needed. This review describes the critical role of glial cells in the nervous system and reviews the optogenetic applications of several types of glial cells, as well as their significance in neuron-glia interactions. Together, it briefly discusses the therapeutic potential and feasibility of optogenetics.

5.
Cancer Med ; 12(18): 18633-18642, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37654198

RESUMEN

BACKGROUND: Programmed death-ligand 1 (PD-L1) is an important screening biomarker to select patients with gastric cancer (GC) for optimized treatment, including immune checkpoint inhibitors (ICI). METHODS: In this single-institution retrospective cohort study, patients with metastatic GC with available PD-L1 results between October 2019 and September 2021 were identified by reviewing their electronic medical records. Genomic data were obtained from the Samsung Medical Center Clinical Sequencing Platform. RESULTS: Among the 399 patients, 276 (69%) had a PD-L1 combined positive score (CPS) ≥1, 155 (39%) had a CPS between 1 and 5, and 121 (30%) had a CPS ≥5. Of the 121 patients with CPS ≥5, 28 (23%) had a known etiology for "inflamed tumor," with Epstein-Barr virus (EBV) positivity (N = 11) or high tumor mutational burden (TMB) (N = 17), which included microsatellite instability (MSI) (N = 9). PD-L1 CPS ≥5 was observed in 11/11 (100%) patients with EBV positivity, 9/12 (75%) patients with MSI, and 17/33 (52%) patients with high TMB. For the 108 patients who received ICI therapy, CPS ≥5 was the only predictor significantly associated with survival in multivariable analyses, including TMB, MSI, or EBV. Objective response rate (ORR) was 49% in patients with CPS ≥5, 30% in patients with 1 ≤ CPS <5, and 19% in patients with CPS <1. Among the 31 responders to ICI therapy, 27 (87%) had a CPS of ≥1. Mutations in TET2, IRS2, DOT1L, PTPRT, and LRP1B were associated with a higher ORR (63%-100%), whereas MDC1 mutations were associated with a low ORR (22%). CONCLUSIONS: PD-L1 expression is an independent and sensitive biomarker for ICI therapy. Considering its significant association with several gene alterations, including PIK3CA mutations and MET amplification, combining ICI therapy with other targeted agents may be a promising therapeutic strategy for GC.

6.
J Immunother Cancer ; 10(8)2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36002189

RESUMEN

BACKGROUND: The obesity paradox is a topic of increasing interest in oncology and epidemiology research. Although this phenomenon has been observed in melanoma patients receiving immune checkpoint inhibitors, little is known about its mechanism. We aim to investigate the prognostic value of obesity and its association with adiposity and systemic inflammation. METHODS: This retrospective study evaluates the data of patients who received pembrolizumab or nivolumab for unresectable or metastatic melanoma between June 2015 and April 2021. The skeletal muscle index (SMI) and visceral fat index (VFI) (cm2/m2) were calculated by dividing the cross-sectional areas of skeletal muscle and visceral fat by height squared. The systemic immune-inflammation index (SII) was defined as the total peripheral platelet count×neutrophil/lymphocyte ratio. Cox proportional hazard regression analysis was conducted to determine the association with overall survival. RESULTS: We analyzed 266 patients with a median age of 60 years (IQR 51-69 years; 135 men and 131 women). The protective effect of obesity was independent of covariates (HR 0.60; 95% CI 0.37 to 0.99; p=0.048), but disappeared after adjusting for VFI (HR 0.76; 95% CI 0.41 to 1.40; p=0.380) or SII (HR 0.71; 95% CI 0.42 to 1.18; p=0.186). An increase of 10 cm2/m2 in VFI was associated with longer overall survival after adjusting for covariates (HR 0.88; 95% CI 0.79 to 0.99; p=0.029). The prognostic value of VFI remained and predicted favorable overall survival after additional adjustment for SMI (HR 0.86; 95% CI 0.76 to 0.98; p=0.025), but disappeared with adjustment for SII (HR 0.92; 95% CI 0.82 to 1.03; p=0.142). An increase of 100×109/L in SII was associated with poor overall survival when adjusted for covariates (HR 1.08; 95% CI 1.05 to 1.11; p<0.001) or when additionally adjusted for VFI (HR 1.07; 95% CI 1.04 to 1.10; p<0.001). CONCLUSIONS: Visceral adiposity and systemic inflammation are significant prognostic factors in patients with unresectable or metastatic melanoma receiving immune checkpoint inhibitors. The prognostic impact of visceral adiposity is dependent on systemic inflammation status.


Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Adiposidad , Anciano , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inflamación/patología , Masculino , Melanoma/complicaciones , Melanoma/tratamiento farmacológico , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/epidemiología , Estudios Retrospectivos
7.
Adv Exp Med Biol ; 1379: 231-256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35760994

RESUMEN

Tumors disrupt the normal homeostasis of human body as they proliferate in abnormal speed. For constant proliferation, tumors recruit new blood vessels transporting nutrients and oxygen. Immune system simultaneously recruits lymphatic vessels to induce the death of tumor cells. Hence, understanding tumor dynamics are important to developing anti-cancer therapies. Tumor-on-a-chip technology can be applied to identify the structural and functional units of tumors and tumor microenvironments with high reproducibility and reliability, monitoring the development and pathophysiology of tumors, and predicting drug effectiveness. Herein, we explore the ability of tumor-on-a-chip technology to mimic angiogenic and lymphangiogenic tumor microenvironments of organs. Microfluidic systems allow elaborate manipulation of the development and status of cancer. Therefore, they can be used to validate the effects of various drug combinations, specify them, and assess the factors that influence cancer treatment. We discuss the mechanisms of action of several drugs for cancer treatment in terms of tumor growth and progression involving angiogenesis and lymphangiogenesis. Moreover, we present future applications of emerging tumor-on-a-chip technology for drug development and cancer therapy.


Asunto(s)
Dispositivos Laboratorio en un Chip , Neoplasias , Humanos , Microfluídica , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Reproducibilidad de los Resultados , Microambiente Tumoral
8.
J Oncol ; 2022: 9714570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342406

RESUMEN

Aberrations in the fibroblast growth factor receptor2 (FGFR2) gene, including genetic alterations and chromosomal rearrangements, lead to the development and progression of cancer with poor prognosis. However, the mechanisms underlying the FGFR2 signaling pathway to facilitate the development of FGFR2-targeted therapies have not been fully explored. Here, we examined the clinicopathological features of FGFR2 amplification and fusion in gastrointestinal tract/genitourinary tract cancers. FGFR2 amplification and fusion were identified in approximately 1.5% and 1.1% of all cancer types in 1,373 patients, respectively, with both FGFR2 amplification and fusion occurring together at a rate of approximately 0.6%. Of all cancer types screened, gastric cancer (GC) was the most common cancer type with FGFR2 amplification (87.5% of all FGFR2 amplification case) or fusion (46.7% of all cases). In addition, FGFR2 alteration had poorer overall survival (OS, 13.7 months vs. 50.2 months, P = 0.0001) and progression-free survival (PFS, 5.6 months vs. 11.4 months, P = 0.0005) than did those without FGFR2 alteration, respectively. Taken together, our data underscore to screen solid cancer patients for FGFR2 aberrations in oncology clinic.

9.
Biotechnol Bioeng ; 119(2): 566-574, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34716703

RESUMEN

In vitro platforms for studying the human brain have been developed, and brain organoids derived from stem cells have been studied. However, current organoid models lack three-dimensional (3D) vascular networks, limiting organoid proliferation, differentiation, and apoptosis. In this study, we created a 3D model of vascularized spheroid cells using an injection-molded microfluidic chip. We cocultured spheroids derived from induced neural stem cells (iNSCs) with perfusable blood vessels. Gene expression analysis and immunostaining revealed that the vascular network greatly enhanced spheroid differentiation and reduced apoptosis. This platform can be used to further study the functional and structural interactions between blood vessels and neural spheroids, and ultimately to simulate brain development and disease.


Asunto(s)
Técnicas de Cocultivo/métodos , Dispositivos Laboratorio en un Chip , Neovascularización Fisiológica/fisiología , Células-Madre Neurales/citología , Esferoides Celulares/citología , Apoptosis/fisiología , Vasos Sanguíneos/fisiología , Diferenciación Celular/fisiología , Humanos , Ingeniería de Tejidos
10.
Cancer Med ; 10(20): 7253-7262, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34542244

RESUMEN

BACKGROUND: Diffuse-type gastric cancer (GC) is known to be more aggressive and relatively resistant to conventional chemotherapy. Hence, more optimized treatment strategy is urgently needed in diffuse-type GC. METHODS: Using a panel of 10 GC cell lines and 3 GC patient-derived cells (PDCs), we identified cell lines with high EMTness which is a distinct feature for diffuse-type GC. We treated GC cells with high EMTness with ramucirumab alone, TGF-ß receptor kinase inhibitor (TEW-7197) alone, or in combination to investigate the drug's effects on invasiveness, spheroid formation, EMT marker expression, and tumor-induced angiogenesis using a spheroid-on-a-chip model. RESULTS: Both TEW-7197 and ramucirumab treatments profoundly decreased invasiveness of EMT-high cell lines and PDCs. With a 3D tumor spheroid-on-a-chip, we identified versatile influence of co-treatment on cancer cell-induced blood vessel formation as well as on EMT progression in tumor spheroids. The 3D tumor spheroid-on-a-chip demonstrated that TEW-7197 + ramucirumab combination significantly decreased PDC-induced vessel formation. CONCLUSIONS: In this study, we showed TEW-7197 and ramucirumab considerably decreased invasiveness, thus EMTness in a panel of diffuse-type GC cell lines including GC PDCs. Taken together, we confirmed that combination of TEW-7197 and ramucirumab reduced tumor spheroid and GC PDC-induced blood vessel formation concomitantly in the spheroid-on-a-chip model.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Neoplasias Gástricas/tratamiento farmacológico , Anticuerpos Monoclonales Humanizados/farmacología , Línea Celular Tumoral , Humanos , Ramucirumab
11.
Sci Adv ; 7(5)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33514550

RESUMEN

Demyelinating diseases involve loss of myelin sheaths and eventually lead to neurological problems. Unfortunately, the precise mechanisms remain unknown, and there are no effective therapies. To overcome these limitations, a reliable and physiologically relevant in vitro model is required. Here, we present a three-dimensional peripheral nervous system (PNS) microfluidic platform that recapitulates the full spectrum of myelination, demyelination, and remyelination using primary Schwann cells (SCs) and motor neurons (MNs). The platform enables reproducible hydrogel patterning and long-term stable coculture of MNs and SCs over 40 days in vitro based on three distinct design factors. Furthermore, the on-demand detachable substrate allows in-depth biological analysis. We demonstrated the possibility of mimicking segmental demyelination by lysophosphatidylcholine, and recovery of myelin structure by application of two drugs: benzatropine or methylcobalamin. This 3D PNS disease-on-a-chip may serve as a potential platform for understanding the pathophysiology of demyelination and screening drugs for remyelination.

12.
ACS Chem Neurosci ; 11(24): 4280-4288, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33269905

RESUMEN

Increasing evidence demonstrates that optogenetics contributes to the regulation of brain behavior, cognition, and physiology, particularly during myelination, potentially allowing for the bidirectional modulation of specific cell lines with spatiotemporal accuracy. However, the type of cell to be targeted, namely, glia vs neurons, and the degree to which optogenetically induced cell activity can regulate myelination during the development of the peripheral nervous system (PNS) are still underexplored. Herein, we report the comparison of optogenetic stimulation (OS) of Schwann cells (SCs) and motor neurons (MNs) for activation of myelination in the PNS. Capitalizing on these optogenetic tools, we confirmed that the formation of the myelin sheath was initially promoted more by OS of calcium translocating channelrhodopsin (CatCh)-transfected SCs than by OS of transfected MNs at 7 days in vitro (DIV). Additionally, the level of myelination was substantially enhanced even until 14 DIV. Surprisingly, after OS of SCs, > 91.1% ± 5.9% of cells expressed myelin basic protein, while that of MNs was 67.8% ± 6.1%. The potent effect of OS of SCs was revealed by the increased thickness of the myelin sheath at 14 DIV. Thus, the OS of SCs could highly accelerate myelination, while the OS of MNs only somewhat promoted myelination, indicating a clear direction for the optogenetic application of unique cell types for initiating and promoting myelination. Together, our findings support the importance of precise cell type selection for use in optogenetics, which in turn can be broadly applied to overcome the limitations of optogenetics after injury.


Asunto(s)
Optogenética , Células de Schwann , Axones , Células Cultivadas , Neuronas Motoras , Vaina de Mielina
13.
Lab Chip ; 20(22): 4215-4224, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33170919

RESUMEN

This study presents an ultraviolet (UV)-curable polymer which is applicable to open-access microfluidic platforms. The UV-curable polymer was prepared by mixing trimethylolpropane triacrylate (TMPTA), 1,6-hexanediol diacrylate (HDDA), polyethylene glycol-diacrylate (PEG-DA), and Irgacure 184. The polymer resin is optically transparent before and after UV-assisted curing and showed good biocompatibility when culturing multiple types of cells on the nanopatterned polymer substrate. The polymer has good adhesion with poly(dimethylsiloxane) (PDMS) even under large deformation and showed a low swelling ratio when exposed to water, suggesting a possibility to be used as a substrate for an organ on a chip. Furthermore, because the polymers have controllable hydrolysis ability depending on the composition, long-term 3D cell culture and subsequent biological analysis with harvested cells are possible. The self-detachable synthesized UV-curable polymer may help the advancement of biomedical studies using in vitro cell culture.


Asunto(s)
Microfluídica , Polímeros , Técnicas de Cultivo de Célula , Agua
14.
Biotechnol Bioeng ; 117(9): 2658-2667, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32484909

RESUMEN

The emerging field of regenerative medicine has revealed that the exosome contributes to many aspects of development and disease through intercellular communication between donor and recipient cells. However, the biological functions of exosomes secreted from cells have remained largely unexplored. Here, we report that the human hepatic progenitor cells (CdHs)-derived exosome (EXOhCdHs ) plays a crucial role in maintaining cell viability. The inhibition of exosome secretion treatment with GW4869 results in the acceleration of reactive oxygen species (ROS) production, thereby causing a decrease of cell viability. This event provokes inhibition of caspase dependent cell death signaling, leading to a ROS-dependent cell damage response and thus induces promotion of antioxidant gene expression or repair of cell death of hypoxia-exposed cells. Together, these findings show the effect of exosomes in regeneration of liver cells, and offer valuable new insights into liver regeneration.


Asunto(s)
Antioxidantes , Exosomas , Hepatocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Células Madre/efectos de los fármacos , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacología , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Niño , Exosomas/química , Exosomas/metabolismo , Femenino , Hepatocitos/metabolismo , Humanos , Células Madre/metabolismo
15.
Biotechnol Bioeng ; 116(10): 2425-2438, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31180148

RESUMEN

Axonal regeneration and remyelination of peripheral motor neurons (MNs) are critical for restoring neuromuscular motor function after injury or peripheral neuropathy. We examined whether optogenetically mediated light stimulation (OMLS) could enhance the axon outgrowth and myelination of MNs using three-dimensional motor neuron-Schwann cell (MN-SC) coculture on a microfluidic biochip. The biochip was designed to allow SCs to interact with the axons of MNs, while preventing direct contact between SCs and the cell bodies of MNs. Following coculture with SCs on the microfluidic biochip, MNs were transfected with a light-sensitive channelrhodopsin gene. Transfected MNs subjected to repeated light stimulation (20 Hz, 1 hr) produced significantly longer axons than nontransfected MNs. OMLS of MNs greatly increased the number of myelin basic protein (MBP)-expressing SCs, promoting the initiation of myelination of MNs. Ultrastructurally, OMLS of MNs markedly enhanced the thickness of the compact myelin sheath around the MN axons such that the average thickness was closer to that of the theoretical estimates in vivo. Thus, the MN-SC coculture model on a microfluidic biochip augmented by OMLS of MNs is a feasible platform for studying the relationship of neuronal activity with regrowth and remyelination.


Asunto(s)
Axones/metabolismo , Dispositivos Laboratorio en un Chip , Neuronas Motoras/metabolismo , Optogenética , Células de Schwann/metabolismo , Animales , Técnicas de Cocultivo , Ratones , Neuronas Motoras/citología , Células de Schwann/citología
16.
Biofabrication ; 11(3): 035013, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917359

RESUMEN

Microfluidics have enabled a wide range of experimental possibilities in the field of neuroscience. Unfortunately, the wider scale adoption of polydimethylsiloxane (PDMS) based microfluidic devices faces challenges due to inherent material compatibility issues and lack of standardized manufacturable devices. In this work, we present an injection molded plastic array three-dimensional (3D) neuron culture platform (Neuro-IMPACT) made of polystyrene (PS) with a standard 96-well plate form factor that can recapitulate elements of both the central and peripheral nervous systems. A standardized in vitro platform for neuron culture will facilitate the development of new therapies for neurodegenerative diseases, as they would enable quantitative analysis based on imaging as well as biochemical analysis. To demonstrate the versatility of Neuro-IMPACT, we modeled physiologically relevant complex co-culture models such as a 3D neuronal network, blood-brain barrier, and myelination. The Neuro-IMPACT offers a high-throughput screening compatible platform with the ability to engineer the neuronal microenvironment to aid both basic and applied neuroscience research.


Asunto(s)
Barrera Hematoencefálica/fisiología , Microfluídica/instrumentación , Microfluídica/métodos , Modelos Neurológicos , Vaina de Mielina/metabolismo , Red Nerviosa/fisiología , Animales , Axones/metabolismo , Humanos , Ratones , Vaina de Mielina/ultraestructura , Proteínas del Tejido Nervioso/metabolismo , Ratas Sprague-Dawley
17.
Sci Rep ; 9(1): 3487, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837563

RESUMEN

Schwann cells (SCs) constitute a crucial element of the peripheral nervous system, by structurally supporting the formation of myelin and conveying vital trophic factors to the nervous system. However, the functions of SCs in developmental and regenerative stages remain unclear. Here, we investigated how optogenetic stimulation (OS) of SCs regulates their development. In SC monoculture, OS substantially enhanced SC proliferation and the number of BrdU+-S100ß+-SCs over time. In addition, OS also markedly promoted the expression of both Krox20 and myelin basic protein (MBP) in SC culture medium containing dBcAMP/NRG1, which induced differentiation. We found that the effects of OS are dependent on the intracellular Ca2+ level. OS induces elevated intracellular Ca2+ levels through the T-type voltage-gated calcium channel (VGCC) and mobilization of Ca2+ from both inositol 1,4,5-trisphosphate (IP3)-sensitive stores and caffeine/ryanodine-sensitive stores. Furthermore, we confirmed that OS significantly increased expression levels of both Krox20 and MBP in SC-motor neuron (MN) coculture, which was notably prevented by pharmacological intervention with Ca2+. Taken together, our results demonstrate that OS of SCs increases the intracellular Ca2+ level and can regulate proliferation, differentiation, and myelination, suggesting that OS of SCs may offer a new approach to the treatment of neurodegenerative disorders.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Luz , Proteína Básica de Mielina/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio Tipo T/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo/química , Medios de Cultivo/farmacología , Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , Inositol 1,4,5-Trifosfato/farmacología , Ratones , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Optogenética , Células de Schwann/citología , Células de Schwann/metabolismo
18.
Glia ; 67(2): 360-375, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30444070

RESUMEN

Schwann cells (SCs), the primary glia in the peripheral nervous system (PNS), display remarkable plasticity in that fully mature SCs undergo dedifferentiation and convert to repair SCs upon nerve injury. Dedifferentiated SCs provide essential support for PNS regeneration by producing signals that enhance the survival and axon regrowth of damaged neurons, but the identities of neurotrophic factors remain incompletely understood. Here we show that SCs express and secrete progranulin (PGRN), depending on the differentiation status of SCs. PGRN expression and secretion markedly increased as primary SCs underwent dedifferentiation, while PGRN secretion was prevented by administration of cAMP, which induced SC differentiation. We also found that sciatic nerve injury, a physiological trigger of SC dedifferentiation, induced PGRN expression in SCs in vivo. These results suggest that dedifferentiated SCs express and secrete PGRN that functions as a paracrine factor to support the survival and axon growth of neighboring neurons after injury.


Asunto(s)
Axones/patología , Proliferación Celular/efectos de los fármacos , Neuronas Motoras/patología , Progranulinas/metabolismo , Células de Schwann/metabolismo , Neuropatía Ciática/patología , Animales , Axones/efectos de los fármacos , Bucladesina/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Medios de Cultivo Condicionados/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Fluoresceínas/metabolismo , Espectrometría de Masas , Ratones , Ratones Endogámicos ICR , Neuronas Motoras/efectos de los fármacos , Progranulinas/farmacología , ARN Mensajero/metabolismo , Células de Schwann/química , Médula Espinal/citología
19.
Chemphyschem ; 19(10): 1123-1127, 2018 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-29542276

RESUMEN

The schwann cells of the peripheral nervous system are indispensable for the formation, maintenance, and modulation of synapses over the life cycle. They not only recognize neuron-glia signaling molecules, but also secrete gliotransmitters. Through these processes, they regulate neuronal excitability and thus the release of neurotransmitters from the nerve terminal at the neuromuscular junction. Gliotransmitters strongly affect nerve communication, and their secretion is mainly triggered by synchronized Ca2+ signaling, implicating Ca2+ waves in synapse function. Reciprocally, neurotransmitters released during synaptic activity can evoke increases in intracellular Ca2+ levels. A reconsideration of the interplay between the two main types of cells in the nervous system is due, as the concept of nervous system activity comprising only neuron-neuron and neuron-muscle action has become untenable. A more precise understanding of the roles of schwann cells in nerve-muscle signaling is required.


Asunto(s)
Células de Schwann/metabolismo , Sinapsis/metabolismo , Animales , Humanos , Células de Schwann/citología
20.
Methods Mol Biol ; 1727: 403-411, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29222800

RESUMEN

A culture system that can recapitulate myelination in vitro will not only help us to better understand the mechanism of myelination and demyelination but also identify possible therapeutic interventions for treating demyelinating diseases. Here, we introduce a simple and reproducible myelination culture system using mouse motor neurons (MNs) and Schwann cells (SCs). Dissociated motor neurons are plated on a feeder layer of SCs, which interact with and wrap around the axons of MNs as they differentiate in culture. In our MN-SC co-culture system, MNs survive over 3 weeks and extend long axons. Both viability and axon growth of MNs in the co-culture are markedly enhanced as compared to those of MN monocultures. Co-labeling of myelin basic proteins and neuronal cell microtubules reveals that SCs form myelin sheaths by wrapping around the axons of MNs.


Asunto(s)
Técnicas de Cocultivo/métodos , Neuronas Motoras/citología , Células de Schwann/citología , Animales , Axones/fisiología , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Células Nutrientes , Ratones , Neuronas Motoras/metabolismo , Proteína Básica de Mielina/metabolismo , Células de Schwann/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA